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“Micromodels”: Continuous Time Markov Chains

The underlying semantics of stochastic w-calculus (and stochastic
interacting automata). Well established in many ways.

o Automata with rates on transitions.

“The” correct semantics for chemistry, executable.
o Gillespie stochastic simulation algorithm

Lots of advantages
o Compositional, compact, mechanistic, etc.

But do not give a good sense of “collective” properties.
o Yes one can do simulation.
o Yes one can do program analysis.
o Yes one can perhaps do modelchecking.
o But somewhat lacking in “analytical properties” and “predictive power”.



“Macromodels”: Ordinary Differential Equations

e The classical semantics of collective behavior.
o E.g. kinetic theory of gasses.

o They always ask: “How does you automata model relate to the 75 ODE models in the
literature?”

e Going from processes/automata to ODEs directly:

o In principle: just write down the Rate Equation:
- Let [S] be the “number of processes in state S” as a function of time.
- Define for each state S:

d[S]/dt = (rate of change of the number of processes in state S)
Cumulative rate of transitions from any state S’ to state S, times [S’],
minus cumulative rate of transitions from S to any state S”, times [S].

o Fairly intuitive (rate = inflow minus outflow)

e Going to ODEs indirectly through chemistry
o If we first convert processes to chemical reactions,
then we can convert to ODEs by standard means!




The Two Semantic Sides of Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

=
Continuous
Chemistry
1 T Process Nondeterministic
. Algebra Semantics
Discrete
Chemist
‘ ry l Stochastic
CTMC | = | CTMC SR

Discrete-state Semantics
(Chemical Master Equation)

These diagrams commute via appropriate maps.
L. Cardelli: “On Process Rate Semantics” (TCS)
L. Cardelli: “A Process Algebra Master Equation” (QEST’07)



Quantitative Process Semantics

Continuous-state Semantics Process Rate Equation
(Mass Action Kinetics)
d[X1/dt = (E(YeE) Accrg(Y. X)-[Y]) - Deple(X)-[X]  forall XeE

ODE =
1 Accretion Depletjon

Continuous
Chemistry

1 T Process Nondeterministic

. Algebra Semantics Defined over the

Discrete syntax of processes
Chemistry :
‘ Stochastic
CIMC | = [ CTMC SR Ehes

Intepdctions Propensity

Discrete-state Semantics
(Chemical Master Equation) opr(p,t)/ot = Zi5ai(p-vi)-pr(p-vi.t) - ai(p)-pr(p.t)  forall pe States(E)

Process Master Equation



Stochastic Processes
& Discrete Chemistry
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Chemical Reactions (FSRN)

A
A1 + A2 %r B1 +...+ Bn (nzO)

—" By +...+ B, =0

A+A 5T B, +..+ B, 0

No other reactions!

Unary Reaction
Hetero Reaction

Homeo Reaction

d[A]/dt = -r[A]
d[A]/dt = -r[A][A;]
d[A]/dt = -2r[A]2

Exponential Decay
Mass Action Law

Mass Action Law

(assuming A=B;=A, for all i,j)

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie?
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely frimolecular reactions do not physically occur
in dilute fluids with any appreciable frequency. Apparenily
trimolecular reactions in a fluid are usually the combined
result of two bimolecular reactions and one monomeolecular
reaction, and involve an additional short-lived species.

Chapter IV: Chemical Kinetics
[David A. Reckhow , CEE 572 Course]

. reactions may be either elementary or non-
elementary. Elementary reactions are those
reactions that occur exactly as they are
written, without any intermediate steps. These
reactions almost always involve just one or two
reactants. ... Non-elementary reactions involve
a series of two or more elementary reactions.

Many complex environmental reactions are non-

elementary. In general, reactions with an
overall reaction order greater than two, or
reactions with some non-integer reaction order
are non-elementary.

THE COLLISION THEORY OF REACTION
RATES www.chemguide.co.uk

The chances of all this happening if
your reaction needed a collision
involving more than 2 particles are
remote. All three (or more) particles
would have to arrive at exactly the
same point in space at the same time,
with everything lined up exactly right,
and having enough energy to react.
That's not likely to happen very often!

Trimolecular reactions:
A+B+C—>'D

the measured “r” is an (imperfect)
aggregate of e.g.:

A+ B« AB

Enzymatic reactions:
S B P

E+S < ES

the “r” is given by Michaelis-Menten
(approximated steady-state) laws:




Chemical Ground Form (CGF)

E::=0: X=M, E Reagents
M::=0: m;P®M Molecules
P::=0: X|P Solutions
TI=Te Ay b lag

(To translate chemistry to processes we
need a bit more than interacting
automata: we may have “+” on the right
of —, that is we may need “|” after m.)

la

9 A|A|B|B

A=1aA®?b;B —
B=1b;B®?a;A

A stochastic
subset of CCS

(no values, no restriction)

Actions (delay, input, output)
Reagents plus Initial Conditions

@ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 =0|P =P)
and null molecule (M@0 = 0&M = M)
Each X in E is a distinct species
Each name a is assigned a fixed rate r: a,

Ex: Interacting Automata
(= finite-control CGFs: they use “|” only in initial conditions):

Automaton in state A

Automaton in state B

' Initial

conditions:
2A and 2B
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From CGF to Chemistry (by example)

A=la;,;A®D ?a,;B
B =7a,;A® 1A



From CGF to Chemistry (by example)

-

@..‘.@... A st A

B—>SA

A=la;A® ?a;B
B =7a,A® 1A



From CGF to Chemistry (by example)

(@@

A+B " A +B’

2a
2,

A=1a;A® ?a;B
B =73,A® 1A



From CGF to Chemistry (by example)

\

A+A 52T N +A”

J

A+B =" A+A
A+A —2r A+B

Double rate for
homeo reactions

A=l1a;A® ?a;B
B =7a;A® 1A



From CGF to Chemistry (by example)

Interacting Discrete
= :
Automata Chemistry

initial states initial quantities

A+A 52 AN +A”

ODE

t

Continuous
Chemistry

i

Discrete
Chemistry

'

CTMC

ODE

|

Process
Algebra

CTMC




From CGF to Chemistry: Ch(E)

E::=0 : X=M, E Reagents , ,
E.X.i & thei-th
M::=0: m;P®M Molecules A-summand of the
| | molecule M
A e A Solutions associated with the
Ti=T, i fa, i la, Interactions (delay, input, output) X reagent of E

CGF ::=E,P Reagents plus Initial Conditions

Chemical reactions for E,PI (N.B.: <...> are reaction tags to obtain multiplicity of reactions,
and P is P with all the | changed to +)

{(«X.i>: X =" P) s.t. E.X.i = 1(,;P} U

{(<x.i,Yj>: X+ Y =T P + Q) s.t. X=Y, E.X.i=72a,;P, E.Y.j = la,;Q} L

{(xiXxj>: X+ X 32" P + Q) s.t. E.X.i =7a,;P, E.X.j = la,;Q}
Initial conditions for P:

Ch(P):= P



Entangled vs Detangled

Entangled
s A+B —" A+B’ A+B —" A+B’
Q' A+C -7 A+C’ !bw lc A+C -7 A+C’
.i,. 'i.‘ A=1b;A® IC;A
B =7?b;B’

A=13aA

, B =7a;B’
"_a.. C =1a;C’ H (b@r) ¢
(@@r) g _g (cer) B =0
C=0 C=0
Entangled: Two reactions Detangled: Two reactions
on one channel on two separate
channels

We need a semantics of automata that identifies
automata that have the “same chemistry”.

No traditional process algebra equivalence is like this!




Entangled vs detangled

E; Detangle(E;)

(closely related to
Pi(Ch(E;)) )



Chemical Parametric Form (CPF)

E::=0 : X(p)=M, E Reagents

M:=0: m;P®M Molecules

P::=0: X(p) | P Solutions

Ti=Ty i fag(P) ¢ lagy(p) Actions

CPF::=E,P with initial conditions

@ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 =0|P =P)
and null molecule (M@0 = 0&M = M)

Not bounded-state systems. Each X in E is a distinct species

i p are vectors of names
Not finite-control systems. p are vectors of distinct names when in binding position

But still finite-species systems. Each free name a in E is assigned a fixed rate r: a,
: . Example:
A translation from CPF to CGF exists . .
(expanding all possible instantiation of Neg(a,b) = 7a; Inh(a,b) ® 7.; (Tr(b) | Neg(a,b))
parameters from the initial conditions) Inh(a,b) = 1,,; Neg(a,b)
. . . . Tr(b) = !b; Tr(b) ® t4; O
An incremental translation algorithm exists Neg(x,X)

(expanding on demand from initial conditions)



CPF to CGF: Handling Parameters

Consider first the CPF subset with no communication (pure ?a, !a).

Grounding (replace parameters with constants)

E::=X =M, ..., X =M
where X/p is a name in bijection with <X,p> 1(P1)=M, n(Pn)=M,

(each X/p is seen as a separate species) M:=n;P,®..®0xn;P,

[(M;Py @ e ® TPL) =ges T3/ (Py) @ o ® 705/ (P,) P = X;(Py) | - | Xo(Py)
= ? |

[(Xi(P1) |+ | Xa(Pn)) =der Xi/P1 | e | Xo/ Py, mi=1, 7a la

Let N be the set of free names occurring in E.

E. is the Parametric Explosion of E (still a finite species system)
computed by replacing parameters with all combinations of free names in E

Ee := {(X/q = / (M{p—q})) s.t. (X(p) = M) € E and q € N}

P;:=/P (simply ground the given initial conditions once)

E; is a CGF! To obtain the chemical reactions Chp(E), just compute Ch¢(E;)

ChP(E) il ChG(EG)



CPF to CGF: Handling Communication

Grounding (replace parameters with constants) E = X, (p,)=M X (p.)=M
oo T NPTV o n/~""n

just one main change: now also convert each input parameter
into a ground choice of all possible inputs M =Py @ ... @ 5Py

N is the set of free names in E,P P ::=Xi(py) | .- | X,(Py)

#p is the length of p it Ia
n/p is a name in bijection with <n,p> =7 falp) la(p)

X/p is a name in bijection with <X,p>
(each X/p is seen as a separate species)

IN(T5P) = 75 /n(P)

/vt (P);P) = ta/p); /n(P)

/n(7a(P);P) = ®(qe N#P) of 2a/q;; /n(P{P<q})
/(TP @ . @ 1 ;PL) = /(T3 Py) © .l @ /(7 P)
INK(P1) | oo | Xo(PR)) = Xi/Pq | oo | X/ Py

E. is again the Parametric Explosion of E

Eq := {(X/q = /\(M{p<q})) s.t. (X(p) =M) € Eand q € N}

Ps := /(P) (simply ground the given initial conditions once)

Ch(E) = Chg(Eg) E; is a again a CGF!



CPF to CGF Translation. Ex: Neg(x,Xx)

E= e iteration 3 -----
Neg(a,b) = ?a; Inh(a,b) @ t,; (Tr(b) | Neg(a,b)) C := {Neg/x,x —»¢ Tr/x + Neg/x,Xx
Inh(a,b) = 7,,; Neg(a,b) Tr/x =40
Tr(b) = !b; Tr(b) ® 14; O Tr/x + Neg/x,x =X Tr/x + Inh/x,X
Neg(x,X) Inh/x,x —" Neg/x,x}
----- initialization ----- E.:= no change
E.:= {Neg/x,x = ?x; Inh/x,x @ t; (Tr/x | Neg/x,x)}  ----- termination -----
----- iteration 1 ----- fNeg/x,x —¢ Tr/x + Neg/x,Xx
C := {Neg/x,x —»¢ Tr/x + Neg/x,x } Tr/x —40
E.:= {Neg/x,x = ?x; Inh/x,x ® 1,; (Tr/x | Neg/x,Xx) Tr/x + Neg/x,x =X Tr/x + Inh/x,X
Tr/x = Ix; Tr/x & t4; 0} Inh/x,x =" Neg/x,x
----- iteration 2 ----- \Neg/x,x
C := {Neg/x,x —¢ Tr/x + Neg/x,x
Tr/x =40

Tr/x + Neg/x,x —P® Tr/x + Inh/x,x }

E.:= {Neg/x,x = ?x; Inh/x,x @ 1; (Tr/x | Neg/x,Xx)
Tr/x=1x; Tr/x® 14 0
Inh/x,x = 1,; Neg/x,x}
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From Chemistry to CGF (by example)
Xs br C /I Reactions names
X: B-osA ©) (" (0
b: A+B =" A+A
c: A+A -2 A+B B

Half-rate for
homeo reactions
Unique reaction
names .
Species

A



From Chemistry to CGF (by example)

X(s) br) Cir)

X: B—=A A
b: A+B - A+A
c: A+A -2 A+B S v°

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P,
add t;P; to <X,v;;>.



From FSRN to CGF (by example)

X(s) br) Cir)

X: B—>%A

A ZA|A
b: A+B > A+A
c: A+A 57" A+B B 0

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add t;P; to <X,v;;>.

Hetero reaction v;: X+Y —k; P,
add 7;P, to <X,v;> and !;0 to <Y,v;>



From FSRN to CGF (by example)

X(s) br) Cir)

X: B—osA 2:A|B

A BAIA
b: A+B - A+A s
c: A+A 57" A+B B O

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add t;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P, to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P, and !;0 to <X,v.>



From FSRN to CGF (by example)

B—sA
b: A+B =" A+A
c: A+A —2r A+B

2

. Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add t;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P; to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P; and !;0 to <X,v;>

: Read the result by rows:

A=7b.);(AlA) @ ?c;(AIB) ® lIcy;0

2A|B
1:0

2;AA




From FSRN to CGF (by example)

X(s) b Cir)

X: B—oSA %;A|B
A )

b: A+B - A+A ;0

c: A+A 2" A+B i A ‘

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add t;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P; to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P; and !;0 to <X,v;>

2: Read the result by rows:

A=A @ ?c,;(AIB) @ Ic);0



From FSRN to CGF (by example)

B >SA
b: A+B =" A+A
c: A+A 52" A+B

2

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add t;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P, to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P, and !;0 to <X,v.>

2: Read the result by rows:

A=A @ 7c;B @ lci);A

X(s) br) C

T;A A



From Chemistry to Automata (by example)

Half-rate for

channels and rates :
vy A+B —Sk, C+C Interaction (1 per reaction) homeo reactions
v: A+C —k, D Matrix
Vikt)y Vaka)  V3k3) Va2
Vs C —k; E+F A 2;(CIC) ;D
\7% F+F —k, B 8 § B 1:0
o VvV
: . 5 8 C 0 T (EIF)
: Fill the matrix by columny = @
c5 D
. . L a
Degradation reaction v;: X —K; P, o _ E
add t;P; to <X,v;;>. = ?;B
Hetero reaction v;: X+Y —K; P, il
add 7;P, to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —K; P,
add 7;P; and 150 to <X,v;> 2: Read the result by rows: O;E = OEE
A= Wi (C1C) © 2vaq);D Continuous
B = 1Vi4);0 Chemistry
_ ebra
D=0 Discrete
E=10 Chemistry

F = ™4a2B © Vaa/2)50
CTMC = CTMC



From Chemistry to CGF: Pi(C)

X - Y, +.+Y, +0 Unary Reaction
vi Xi+ Xy Y +.+Y, +0 Binary Reaction

From uniquely-labeled (v:) chemical reactions C to a CGF Pi(C):

Pi(C) = {(X= &((v: X =*P)eC) of (t);P)
®((v: X+Y =k P)e C and Y=X) of (?v);P)
®((v: Y+X =k P)e C and Y=X) of (lv;0)
D((v: X+X =K P)eC) of (V2P @ 1v(/2);0)
s.t. X is a species in C}

— e e —

— ® ©® O

ODE

t

Continuous
Chemistry

‘

Discrete
Chemistry

ODE

Process
Algebra




Some Syntactic Properties

C and Ch(Pi(C)) have the same reactions
o (and their reaction labels are in bijection)

Def: E is detangled if each channel appears once as ?a and once as !a.

If C is a system of chemical reactions then Pi(C) is detangled.
o (hence chemical reactions embed into a subclass of CGFs)

Hence for any E, we have that Pi(Ch(E)) is detangled.
- (E and Pi(Ch(E)) are “equivalent” CGFs, but that has to be shown later)

b2

Def: E,P is automata form if “|” occurs only (other than “|0”) in P.

Def: Detangle(E) is defined from Pi(Ch(E)) by replacing any occurrence pairs
a5 (X1Y]0) and !a ;0 with ?a,;(X|0) and !a;(Y|0).

If E is in automata form then Detangle(E) is (detangled and) in automata form
o (but Pi(Ch(E)) may not be)



Continuous
Chemistry
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Discrete Semantics of Reactions

Syntax:
A+B —" A+A
A+B —" B+B
A+B+B
Semantics:
{1A,2B} 2r,
{3B} «—-Oo—-o {3A}

2ry  2r, {2A,1B}

CTMC

ODE

t

Continuous
Chemistry

‘1

Discrete
Chemistry

ODE

|

Process
Algebra




Discrete Semantics of Reagents

l 'b
Semantics:
{1A,2B} 2r,
{3B} .‘_’O_'. {3A}
2ry  2r, {2A,1B}

CTMC

ODE

t

Continuous
Chemistry

‘1

Discrete
Chemistry

ODE

|

Process
Algebra




Discrete State Equivalence

Def: 222 is equivalent CTMC’s (isomorphic graphs with same rates).

o -ODE = ODE ODE = ODE
Thm: E 22 Ch(E) 1 1
Continuous Continuous I
. PP Chemistry Chemistry
Thm: C 22 P](C) l T Process
Algebra

Discrete
Chemistry
CTMC CTMC CTMC CTMC

For each E there is an E’ 222 E that is detangled (E’ = Pi(Ch(E)))

For each E in automata form there is an an E’ 2% E that is detangled and
in automata form (E’ = Detangle(E)).



Interacting Automata = Discrete Chemistry

This is enough to establish that the process

algebra is really faithful to the chemistry. OfDE = ODE

: : Conti
But CTMC are not the “ultimate semantics” C‘L"e,‘:;{’r“j ‘
because there are still questions of when two 1 T Process
different CTMCs are actually equivalent (e.g. Diecreta Algebra
“lumping”). Chemistry

=

The “ultimate semantics” of chemistry is the
Chemical Master Equation (derivable from the
Chapman-Kolmogorov equation of the CTMC).



Exercise 1

la 'b ic/”
Second-Oder Regime cascade:
a signal amplifier (MAPK)

directive plot la; Ib; Ic

525 aH i > O : C H i = max new a@1.0:chan new b@1.0:chan new c@1.0:chan

500

la
375 Ik
s I run 1000 of (Amp_lo(a,b) | Amp_lo(b.c))
let AQ) = la; AQ)
125 run 100 of A()

a
a 0.0z
100xaHi, 1000xbLo, 1000xcLo, rates=1.0

Write these automata in
CGF and translate them
to chemical reactions.

Zero-Oder Regime cascade:
: a signal divider!

1250 Iz aHi T max —> CHi = 1/3 max directive sample 0.03

directive plot la; Ib; lc

1ooa new a@1.0:chan new b@1.0:chan new c@1.0:chan

750 let Amp_hi(aichan, bichan) =
do Ib; delay@1.0; Amp_hi(ab) or delay®@1.0; Amp_lo(a,b)

500 and Amp_lo(aichan, bichan) =
?a; 2a; Amp_hi(a,b)

250 run 1000 of (Amp_lo(ab) | Amp_lo(b.c))

a =la; .0;
; T let AQ = la; delay@L0; AQ)

run 2000 of A()

2000xaHi, 1000xbLo, 1000xcLo, rates=1.0




Process
Algebra
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The “Type System” of Chemistry

The International System of Units (SI) defines the following physical units, with related derived units
and constants; note that amount of substance is a base unit in SI, like length and time:

mol  (a base unit) mole, unit of amount of substance

m (a base unit) meter, unit of length

5 (a base unit) second, unit of time

L=0.001m> liter (volume)

M =mol L molarity (concentration of substance)

N mol ™ = 6.022-10% Avogadro’'s number (number of particles per amount of substance)

For a substance X:mol, we write [X]:M for the concentration of X, and [X]":M-s™ for the time derivative
of the concentration.

A continuous chemical system (C,V) is a system of chemical reactions C
plus a vector of initial concentrations Vy: M, one for each species X.

The rates of unary reactions have dimension s'.

The rates of binary reactions have dimension M-'s1,
(because in both cases the rhs of an ODE should have dimension M-s1).

Relating Concentration to Number of Molecules
For a given volume of solution V, the volumetric factor y of dimension M is:

Y:MT = NV where N,:mol" and V:L

#X / v : M = concentration of X molecules
v:[X] : 1 = total number of X molecules (rounded to an integer).



Discrete
Chemistry

initial quantities

#A,

A el A’

A+B - A'+B’

A+A - A+A”

The Gillespie Conversion

Continuous
. =N,V M1
Chemistry ' A
initial concentrations
[A]O with [A]o = #AO/Y
A Sk A withk=r 's71

A+B -k A’+B”  withk=ry :Mls!

A+A K A+A” withk=ry/2 Mgl

V = interaction volume

N, = Avogadro’s number

Think y=1
ie. V=1/N,

M =mol-L
molarity (concentration)

1 A
Continuous
Chemistry
1 T Process
Algebra
Discrete
Chemistry
5 v

CTMC

CTMC




ContY and DiscY

+|4.2—3 Definition: Cﬂﬂt-f and DiscT

For a volumetric factor p:M !, we define a translation Cont., from a discrete chemical systems (C,P),
with species X and initial molecule count #Xy = #X(P), to a continuous chemical systems (C,V) with
initial concentration [X]y = Vx. The translation Disc, is its inverse, up to a rounding error [ y[X]g | in
converting concentrations to molecule counts. Since 7y is a global conversion constant, we later
usually omit it as a subscript.

Cont.(X =" P) =X-¢P withk=r, ris] ks

Cont(X+Y »*P) =X+Y kP with k = ry ris! kM st

Cont(X+X »*P) =X+X-KP with k = ry/2 ris! kM st

Cont.(#Xg) =[X]o with [X]g = #Xa/y Xgmol  [X]p:M

Disc(X =5 P) =X—'P withr=k, ks r:s!

Disc(X+Y -5P) =X+Y >'P with r = kfy kMt st

Disc(X+X =%P) =X+X-'P with r = 2k/y kMt st

Disc,([X]o) = #Xg with #Xp = [X]o | [X]oM  Xgmol —
Continuous
Chemistry

Ch, := Cont, o0 Ch 1 T
Discrete

Chemistry

v

CTMC

A

Process
Algebra

CTMC
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Same Semantics

Could chemistry itself be that semantics?
No: different sets of reactions can have the same behavior!

B —>sA
A+B =" A+A
A+A 52T A+B
v,
‘O = ! . ! . ? .
B =?a;A® 1);A . A=1a;A® !b;A® ?b;B

* B =73,A® 7;A

Koo, Different reactions,

but they induce the
same ODEs

A=1a;A® !b;B @ ?b;B
B =7?a;A® 7;A



From Reactions to ODEs (Law of Mass Action)

vy A+B —k, C+C
Vy! A+C —k, D
V3! C —k; E+F
(7% F+F —ky B

Quantity
changes
Stoichiometric
matrix
KRate laws

d[X]/dt = N-|
d[A]/dt = -L, - L,
d[B]/dt = -L, + |,
d[C]/dt = 2L, - L,
d[D]/dt = L,
d[E]/dt = |,

d[F]/dt = L, - 2L,

Stoichiometric

ODE = ODE
Write the Matrix 1
coefficients by
columns Continuous I
D Chemistry
: Process
| reactions kz 1 T Algebra
N|Vi[Va]Vs|Vs _J L Discrete
Al-1]-1 A C Chemistry
o B 1 K
olcl2-1]-1 CTMC = CTMC
2D 1
“TE 1 B C
F 12 ‘k\ | ks
X 4 VF E

g

Read the concentration changes
from the rows

Set a rate law for each reaction
(Degradation/Hetero/Homeo)

X: chemical species

_[3

- l [-]: quantity of molecules
I-1 k1 [A] [B] [: rate laws
E.g. d[A]/dt = l2 kZ[A] [C] k: kinetic parameters
'k1 [A][B] - kz[A][C] l3 k3[c] N: stoichiometric matrix
L k4[F1?




From Processes to ODEs via Chemistry!

: RO
A=1ag;A® 7b;B
C =l CDa;A )

(A+B —SB+B )
B+C —sC+C
\C+A —SA+A )

Al
i

o 900xA, 500xB, 100xC 003

continuous_sys_generator

(d[A]/dt = -s[A
d[B]/dt = -s[B’

d[C]/dt = -s[C]

[B]+s[C][A]
[Cl+s[A][B]
[Al+s[B][C]

(Yy=1)

directive sample 0.03 1000
directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new
c@1.0:chan

let A() = do !a;A() or ?b; B()
and B() = do !b;B() or ?c; C()
and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())

interval/step [0:0.001:20.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.9
(B) dx2/dt = - x2*x3 + x1*x2 0.5
©) dx3/dt = - x3*x1 + x2*x3 0.1

1 A
Continuous
Chemistry
l T Process
Algebra
Discrete
Chemistry
1 4
CTMC = CTMC




From Processes to ODEs via Chemistry!

Bt A
a4 A+B > A4A lose 1A at rate ry
b: A+A - A+B &
(discrete reactions)

d[A]/dt = t[B] + ry[A][B] - ry[A]?
Bt A d[B]/dt = -t[B] -ry[A][B] + ry[A]2
A+B -5 A+A
A+A T A+B —

(continuous reactions)

Different chemistry

t

Continuous
Chemistry

‘1

Discrete
Chemistry

v

CTMC

|

Process
Algebra

------------------------------------------ but Same ODES, hence NN EEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEE
equivalent automata
:: i:;i AA lose 2A at rate ry/2
b: A+A —"B+B &
(discrete reactions)
d[A]/dt = t[B] + ry[A][B] - ry[A]*
Bt A ‘ d[B]/dt = -t[B] -ry[A][B] + ry[A]?

A+B - A+A

ASASTRBB T

(continuous reactions)




Processes Rate Equation

Process Rate Equation for Reagents E in volume vy

d[X]/dt = (Z(YeE) Accrg(Y,X)-[Y]) - Deple(X)-[X]
for all XeE

“The change in process concentration (!!) for X at time t is:
the sum over all possible (kinds of) processes Y of:
the concentration at time t of Y
times the accretion from Y to X
minus the concentration at time t of X
times the depletion of X to some other Y”

Deplg(X) =
(i E.X.i=14;P) 1
X(i: E.X.1=2a,; )ryOutsOn( ) +
(i EXl'a +;P) ry-InsOng(a) X=’C(r);0 — d
Accre(Y, X) = X =?a,;0 d
¥(i: E.Y.i=t,;P) #X(P)r Vola 0 g
Y(i: E.Y.i=2a,;P) #X(P)- ryOutsOnE( ) + *=(r) -
X(i: E.Y.i=la;P) #X(P)-ry-InsOng(a)

X—7a O —> dJ

InsOng(a) = £(YeE) #{Y.i | E.Y.i=?a,);P}-[Y] ) !a -0
OutsOng(a) = X(YeE) #{Y.i | E.Y.i= la(r),p} [Y] (r)’

X XX X

ODE = ODE
Continuous ‘
Chemistry
1 T Process
Algebra
Discrete
Chemistry
CTMC = CTMC
/dt = -r[X]

/dt = -ry[X][Y]
/dt = -ry[X][Y]

/dt = -2ry[X]2




Continuous State Equivalence

Def: = is equivalence of polynomials over the field of reals.

Thm: E = Cont(Ch(E))

Continuous

Thm: Cont(C) ~ Pi(C) Chimif“y

Discrete
Chemistry

v

CTMC

For each E there is an E’ = E that is detangled (E’ = Pi(Ch(E)))

For each E in automata form there is an an E’ = E that is detangled and in

automata form (E’ = Detangle(E)).

ODE

ODE

t

Continuous
Chemistry

CTMC

CTMC

ODE

|

Process
Algebra




Exercise 2

Q: What does this do?

A=la A@ A A =B | Ay=la, A,
B = !b(r);B @® ?a;B’ B’ = ?a;A Bd = !b(r);Bd

|
Derive the ODEs from these “Hysteric Groupies”
automata. Either by going through the chemical
reactions and the Law of Mass Action (easier), or
directly from the Process Rate Equation.

| JL
: ODE predicts dampened -
- oscillation, while the a0l Deterministic Answer:
. stochasic system keeps dampened oscillation
Stochastic Answer: : oscillating at max level. =
robust quasi-oscillation :
200 —— Ga() —— Gb()
o SPiM

160
140
120
100
80
60 -
40
2




Epidemics

Non-Chemical Mass Action

Kermack, W. O. and McKendrick, A. G. "A Contribution to the Mathematical Theory
of Epidemics.” Proc. Roy. Soc. Lond. A 115, 700-721, 1927.

http://mathworld.wolfram.com/Kermack-McKendrickModel.html



Epidemics

linfect ?infect

Susceptible Q?

- @recover

Recovered

?infect

Developing the Use of Process Algebra in the
Derivation and Analysis of Mathematical Models
of Infectious Disease

R. Norman and C. Shankland

Department of Computing Science and Mathematics, University of Stirling, UK.
{ces,ran}@cs.stir.ac.uk

Abstract. We introduce a series of descriptions of disease spread using
the process algebra WSCCS and compare the derived mean field equa-
tions with the traditional ordinary differential equation model. Even the
preliminary work presented here brings to light interesting theoretical
questions about the “best” way to defined the model.

new infect @0.001:chan()
val recover = 0.03

let Recovered() =
?infect; Recovered()

and Susceptible() =
?infect; Infected()

and Infected() =
do linfect; Infected()
or ?infect; Infected()
or delay@recover; Recovered()

run (200 of Susceptible() | 2 of Infected())

25

Recovered() —— Susceptible()

Infected()

200

150

50

0 50 100 150 200



Differentiating

Processes!

(o .. )
S=?1(t),l
| =5l @ 2151 @ ;R

(S+1 S+ )
|+ 1% +|
| - R )

“useless”
reactions

R+ YR+ )

d[S]/dt = -ty[S][I]

d[1]/dt = ty[S][I]
d[R]/dt = r[l]

-r[l]

Automata
produce the
standard ODEs!

a5

— = —nlf

a1 ;

arl

— =—al5 —1bF
ar

iR
dt

br

{the Kermack-McEendrick, or SIE model)|

ODEs

2601

200+

1601

100

50 1

250

200

180+

100+

a0

Infectedd SPiM

Suzceptible
Recovered()

S = 2l
| = lig;l @ TR

t=0.001 r=0.03
$,=200 1,=2

0 200

CellD [igner
v=1.0
S+ 1t +|
| -'R

t=0.001
r=0.03
$,=200/7
1,=2/y

T
continuous_sys_generator

ds/dt = -tySl
di/dt = tySl-rl
dRr/dt = rl

t=0.001 r=0.03
5,=200/7
|0=2/'Y

L . L
0 a0 100 150 200



Simplified Model

not useless!
linfect

Susceptible Q)
g O ?infect Infected

new infect @0.001:chan()
val recover = 0.03

let Recovered() =

()

and Susceptible() =
?infect; Infected()

and Infected() =
do linfect; Infected()
or delay@recover; Recovered()

run (200 of Susceptible() | 2 of Infected())

25

200

150

100

50

Recovered()

useless

Not totally obvious
that one could have
simplified the
automata model.

Susceptible() Infected()

50 100 150 200

(d[S]/dt = -ty[S][I]
d[1]/dt = ty[S][1]-r[1]

|dIR1/dt = ]

Same ODE, hence
equivalent
automata models.
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Predator-Prey

snun®
“‘ I‘.....
¢ L uurm .

Herbivor & ¢ : @breeding

‘. "
'
' 2cull
@predation
' 1cull
Carnivor
-...‘o
@mortality
Camoro
471
314
u]

Flotting: Live
Simulation: Halted. Tirme = 0.343410 {317 points at 0.0068489 simTimefsysTime)

directive sample 1.0 1000
directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())

or 2cull; ()

and Carnivor() =
do delay@mortality; ()
or lcull; (Carnivor() | Carnivor())

run 100 of Herbivor()
run 100 of Carnivor()

An unbounded
state system!



Lotka-Volterra in Matlab

H=1,;(HIH) ® ?c(,;0
C=1,0® Ic,);(CIC)
#H,, #C,

[H—>bH+H )
C-m0
H+C—->PrC+C
[H]o = #Ho/y

\[C]O = #Coly

J

d[H]/dt = b[H]-py[H][C]
d[C]/dt = -m[C]+py[H][C]

[Hlo = #Ho/y
[Clo = #Co/y

900

]

700

600

500

400

300

200

100

Carnivarll  gpip
Herbivor

Extinction

directive sample 0.35 1000
directive plot Carnivor(); Herbivor ()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())
or 2cull; ()

and Carnivor() =
do delay@mortality; ()
or lcull; (Carnivor() | Carnivor())

run 100 of Herbivor()
run 100 of Carnivor()

250 300 350 400

No extinction

Which one is the “right prediction”?
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Chemical Master Equation

Chemical Master Equation for a chemical system C

opr(s,t)/ot = X._, nai(s-V;)-pr(s-v;,t) - a;(s)-pr(s,t) for all seStates(C)

Reactions Propensity
“The change of probability at time t of a state is: ODE —_ ODE
the sum over all possible (kinds of) reactions of: 1
the probability at time t of each state leading to this one .
times the propensity of that reaction in that state Contm.uous
minus the probability at time t of the current state Chemistry P
times the propensity of each reaction in the current state” l T A[ggli:;
se 1..N—Nat is a state of the system with N chemical species Discrete
Chemistry
pr(s,t) = Pr{y(t)=s 1¢(0)=s,} is the conditional probability of the system y
being in state s at time t given that it was in state s, at time 0. CME = CME

There are 1..M chemical reactions.

v; is the state change caused by reaction i (as a difference)

a;i(s) = ¢;-hy(r) is the propensity of reaction i in state s, defined by a base
reaction rate and a state-dependent count of the distinct combinations of
reagents. (It depends on the kind of reactions.)



Process Algebra Master Equation

Process Master Equation for a system of reagents E

opr(rnt)/ot = X g a(r-v;)-pr(r-v,,t) - a;(r)-pr(r,t) for all reStates(E)

Interactions Propensity
“The change of probability at time t of a state is: ODE —_ ODE
the sum over all possible (kinds of) interactions of: 1
the probability at time t of each state leading to this one .
times the propensity of that interaction in that state Contm.uous
minus the probability at time t of the current state Chemistry P
times the propensity of each interaction in the current state” 1 T A[;;E::\
re species(E)—Nat is a state of the system Discrete
Chemistry
pr(r,t) = Pr{x(t)=r |¢(0)=ry} is the conditional probability of the system %
being in state r at time t given that it was in state r, at time 0. CME = CME

3 is the finite set of possible interactions arising from a set of reagents E.
(All T and all 7a/!a pairs in E)

v; is the state change caused by interaction i (as a difference)

a;i(r) = r;-hy(r) is the propensity of interaction i in state r, defined by a base
rate of interaction and a state-dependent count of the distinct
combinations of reagents. (It depends on the kind of interaction.)



... details

Process Master Equation for Reagents E

opr(r,t)/ot = X._q a(r-v;)-pr(r-v;,t) - a;(r)-pr(r,t)  for all reStates(E)

pr(p,t) = Pr{S(t)=p | S(0)=p,} is the conditional probability of the
system being in state p (a multiset of molecules) at time t
given that it was in state p, at time 0.

S = {{X.]} s.t. E.X.i= T(r);Q} U
{{X.i, Y.j} s.t. EXX.i =?n,;Qand E.Y.j = In;R}
is the set of possible interactions in E

v; is the state change caused by an interaction ie 3.
Vi = -X+Q ]f ] = {X.]} S. t. E.X.i = T(r);Q
Vi = X-Y+Q+R  if i={X., Y.j}s.t. E.X.i=?n,;Qand E.Y.j = Iniy;R

a; is the propensity of interaction i in state p. Here p* is the number of X in p.
a(p) = r-p** if i = {X.i} s.t. E.X.i = 74,;,Q

ODE

t

Continuous
Chemistry

‘1

Discrete
Chemistry

CME

a;(p) = r-p™-p#Y if i = {X.i, Y.j} s.t. X=Y and E.X.i =7a,;Q and E.Y.j = la;;R

a;(p) = r-p™-(p™-1) if i = {X.i, X.j} s.t. E.X.i = 7a,;Q and E.X.j = la;R

ODE

Process
Algebra

CME




Equivalence of Master Equations

e Def: = is equivalence of derived Master Equations (they are identical).

-ODE = ODE ODE = ODE
e Thm: E = Ch(E) 1 1
Continuous Continuous I
. . Chemistry Chemistry
e Thm: C= P](C) l T Process
Algebra
Discrete
Chemistry
CME = CME CME = CME




GMA = CME

ODE

t

Continuous
Chemistry

'

v Discrete
* Chemistry

ODE

|

Process
Algebra

}

}

Semantics #1
Continuous state space

Syntax

Semantics #2
Discrete state space



Processes to GMA Directly

Process Rate Equation for Reagents E in volume vy

d[X]/dt = (Z(YeE) Accrg(Y,X)-[Y]) - Deple(X)-[X]
for all XeE

“The change in process concentration (!!) for X at time t is:
the sum over all possible (kinds of) processes Y of:
the concentration at time t of Y
times the accretion from Y to X
minus the concentration at time t of X
times the depletion of X to some other Y”

Deplg(X) =
(i E.X.i=14;P) 1
X(i: E.X.1=2a,; )ryOutsOn( ) +
(i EXl'a +;P) ry-InsOng(a) X=’C(r);0 — d
Accre(Y, X) = X =?a,;0 d
¥(i: E.Y.i=t,;P) #X(P)r Vola 0 g
Y(i: E.Y.i=2a,;P) #X(P)- ryOutsOnE( ) + *=(r) -
X(i: E.Y.i=la;P) #X(P)-ry-InsOng(a)

X—7a O —> dJ

InsOng(a) = £(YeE) #{Y.i | E.Y.i=?a,);P}-[Y] ) !a -0
OutsOng(a) = X(YeE) #{Y.i | E.Y.i= la(r),p} [Y] (r)’

X XX X

ODE = ODE
Continuous ‘
Chemistry
1 T Process
Algebra
Discrete
Chemistry
CTMC = CTMC
/dt = -r[X]

/dt = -ry[X][Y]
/dt = -ry[X][Y]

/dt = -2ry[X]2




Process Algebra Master Equation

Process Master Equation for a system of reagents E

opr(rnt)/ot = X g a(r-v;)-pr(r-v,,t) - a;(r)-pr(r,t) for all reStates(E)

Interactions Propensity
“The change of probability at time t of a state is: ODE —_ ODE
the sum over all possible (kinds of) interactions of: 1
the probability at time t of each state leading to this one .
times the propensity of that interaction in that state Contm.uous
minus the probability at time t of the current state Chemistry P
times the propensity of each interaction in the current state” 1 T A[;;E::\
re species(E)—Nat is a state of the system Discrete
Chemistry
pr(r,t) = Pr{x(t)=r |¢(0)=ry} is the conditional probability of the system %
being in state r at time t given that it was in state r, at time 0. CME = CME

3 is the finite set of possible interactions arising from a set of reagents E.
(All T and all 7a/!a pairs in E)

v; is the state change caused by interaction i (as a difference)

a;i(r) = r;-hy(r) is the propensity of interaction i in state r, defined by a base
rate of interaction and a state-dependent count of the distinct
combinations of reagents. (It depends on the kind of interaction.)



1A is lost in reaction.

d[A]/dt =
Law of Mass Action T
d[A]/dt ry[A]? A+A 4
[Alo=21y
Gillespie conversion T In vol. v
k=2ry/2 A+A 52
A+A
CTMC l
O—p0
A+A

=2 A+A->'0

2A are lost in reaction.

Law of Mass Action
d[A]/dt [A]2

[A]?
I

In vol. YT Gillespie conversion
K =ry/2

1 CTMC

(For conservation of mass, consider instead A+A -2 A+B  vs. A+A —' B+B)



A+A ST A =

~J

A+A >0

d[A]/dt = -rg[A]? = d[A]/dt = -ry[A]2 = d[A]/dt = -ry[A]2 = d[A]/dt = -ry[A]?

A+A ST A A+A — ™20
A= ?a‘”,iof) la,);A [A]O;Z/Y [A]oFZ/Y A= ?a(r,ziO? la,/2);0
| N A+A 527 A A+A =70 &~ |
l A+A A+A l
¥ v

oi>0 — .i;o i ——o —_ — o
AlA A A+A A A+A 0 AlA 0
la 7a la

‘a (a@r/2)



Continuous vs. Discrete Groupies

(RSO ;80 (R340

1000 . .

all with doping

2000

Matlab

2000 1 7 T

1000 - 1 T

SPi

0 50 50 5
2000xA , 0xB , 1xA4, 1xB4, r=1.0

directive sample 5.0 1000
directive plot B(); A()

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?b; B()
and B() = do Ib; B) or 2a; A()

let Ad() = la; Ad()
and Bd() = 1b; Bd()

Fun 2000 of A()
run 1 of (Ad() | Bd()

directive sample 5.0 1000
directive plot B(); A()

new a@1.0:chan()
new b@1.0:chan()

0 ta; A() or 2b; 2b; B()
do 1b; B() or 7a; 2a; A(

run 2000 of A()
run 1 of (Ad() | Bd0)

directive sample 5.0 1000
directive plot B(; A()

new a@1.0:chan()
new ba1.0:chan()

let A() = do a; A() or 7b; ?b; 7b; B()
and B() = do Ib; B() o 2a; %a; a; A()

let Ad() = la;
and Bd() = 1b; Bd()

run 2000 of A()
run 1 of (Ad() | B()

‘Groupe ODEs - Groupies.mat

[0:0.001:5.0] r=1.0 k=1.0
Adxt/dt = -(x1-x2), 2000.0
B.dx2/dt = (x1x2), 0.0

Groupe ODEs - Groupies Hysteric 1.mat

0k=1.0
Adxt/dt=xt"x4-x3%1-x1 x4, 2000.0

Groupe ODEs - Groupies Hysteric 2.mat

[0:0.001:5.0] r=1.0 k=1.0
A dxt/dt=xtx6-x3x1-x1+x6, 2000.0
N/ dt=x3x1x32x1x2, 0.0

B dx6/dt=x1"x4-x1"x6+x4:x6, 0.0



Scientific Predictions

;90

After a while, all 4
states are almost
equally occupied.

The 4 states are
almost never
equally occupied.



R.Blossey, L.Cardelli, A.Phillips:

Compositionality, Stochasticity and
An d Yet It Moves Cooperativity in Dynamic Models of

Gene Regulation (HFSP Journal)

The Repressilator A fine stochastic oscillator over a
] wide range of parameters.
X Neg y4
1 | y 1 Pi
Neg N eg Simu\at\oi?;lg'?n:e = 53810179900 (1070 points at 34439 simTimefsysTime and halted) o Feuees
Parametric representation /d[Neg/x,yl/dt = -r[Tr/x][Neg/x,y] + h[Inh/x,y]352
— 24- . d[Neg/y,z]/dt = -r[Tr/y][Neg/y,z] + h[Inh/y,z] -
Neg(a,b) = 7a; Inh(a,b) ® 7; (Tr(b) | Neg(a,b)) d[Neg/z,x]/dt = -r[Tr/z][Neg/z,x] + h[Inh/z,x]
Inh(a,b) = t,; Neg(a,b) d[Inh/x,y]/dt = r[Tr/x][Neg/x,y] - h[Inh/x,y]
Tr(b) = !b; Tr(b) ® 1,; 0 d[Inh/y,z]/dt = r[Tr/y][Neg/y,z] - h[Inh/y,Z]
N N N d[Inh/z,x]/dt = r[Tr/z][Neg/z,x] - h[Inh/z,X]
€8(X,Y(r) | Neg(y(y,Ze) | Neg(zq),X) d[Tr/x]/dt = e[Neg/z,x] - g[Tr/x]
; d[Tr/y]/dt = e[Neg/x,y] - g[Tr/y]
@Tr/z]/dt = e[Neg/y,z] - g[Tr/z] /
Neg/x,y —¢ Tr/y + Neg/x,y
Neg/y,z —¢ Tr/z + Neg/y,z . lifvi (N is th tit -
Neg/z,x —¢ Tr/x + Neg/z,x simpurying (N 1s the quantity . | el |
Tr/x + Neg/x,y —" Tr/x + Inh/x,y of each of the 3 gates) o Analyt?cally not
Tr/y + Neg/y,z =" Tr/y + Inh/y,z / \ o an oscillator!
Tr/z + Neg/z,x =" Tr/z + Inh/z,x d[Neg/x,y]/dt = hN - (h+r[Tr/x])[Neg/x,y]
Inh/x,y —" Neg/x,y d[Neg/y,z]/dt = hN - (h+r[Tr/y])[Neg/y,z]
Inh/y,z —" Neg/y,z d[Neg/z,x]/dt = hN - (h+r[Tr/z])[Neg/z,x]
Inh/z,x —" Neg/z,x d[Tr/x]/dt = e[Neg/z,x] - g[Tr/x] Matlab
Tr/x =520 d[Tr/y]/dt = e[Neg/x,y] - g[Tr/y] ——
Tr/y —¢0 Q[Tr/ z]/dt = e[Neg/y,z] - g[Tr/z] ) e vt etn et oo oo

g (Neg/x,y) dx1/dt = 0.001 - (0.001 + xdyx1 1.0
Tr/z —»%0 (Neg/x,y) dx2/dt = 0.001 - (0.001 + x5)'x2 1.0
(Neg/x,y) dx3/dt = 0.001 - (0.001 + x6)'x3 1.0
Neg/X,y + Neg/y,Z + Neg/Z,X (Tr/x) dx4/dt = 0.1°3 - 0.001°x4 100.0
(Tery) dx5/dt = 0.1%1 - 0.001%5 0

(Tr/z) dx6/dt = 0.1*x2 - 0.001*x6 0




Continuous
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nZ Scaling Problems

- The stoichiometric matrix has size 2n-n2 = 2n3.
- The ODEs have 2n variables and 2n(n+n) = 4n? terms

(number of variables times number of accretions plus depletions when sums are distributed)

- E, has 2n variables (nodes) and 2n terms (arcs).
- Ch(E,) has 2n species and n? reactions.

E; Ch(E;) StoichiometricMatrix(Ch(E;))

SH [ +1

2 XotYo =" Xi+Y,
: XptY " Xi+Y,

XO = ?a(r);X1
X1 = ?a(r);XZ

X, = 22X gy Xo*+Yq = X+, Xo S|
Yo =1a,);Y; Q00 X4+Yy o Xo+Y, . +1 +1 1 1 1 -1
Y1 =lag;Y, gt Xy+Y 2T X+, X5 +1 +1 +1 -1 -1 1
Y, =13 Yo Ayt Xi+Y, o X+, Yo -1 -1 -1 1

Ay X+ Yy =" XptY,

8y, Xp+Y, > Xg+Y, B I L __

2yt Xp Yy =F Xg+Yo Ve | | < | =
ODE(E,) s
d[Xol/dt = -r[Xo][Yol - r[Xo][Y4] - rIXol[Y2] + rIXoI[Yo] + rIXoI[Y4] + rIX;][Y2]
d[X;1/7dt = -r[X;1[Yo] - rIX,I0Y4] - rIX{I0Y2] + r[Xol[Yol + rIXoI[Y4] + rXo][Y2] Pa la
d[Xp]/dt = -r[X;1[Yo] - rIX,I0Y4] - rIXaI[Y,] + rIX{I[Yo] + FIX{I0Y4] + FIX(ILY2] al () @) |-
d[Yol/dt = -r[Xo][Yo] - rIX;1[Yol - rXoI[Yol + rIXol[Y2] + rIX(I[Y2] + rIX;][Y2] fa la
dYq]/dt = -r[Xp][Y4] - rIX;10Y4] - rIXoI[Y4] + r[Xol[Yol + rIX{I[Yo] + rIX;][Yol (9 )
dYa]/dt = -r[Xo][Y5] - rIX;10Y2] - rIXoI[Y2] + rIXoI[Y4] + FIX(I0Y4] + rIX,][Y4]



Entangled vs detangled

E; Detangle(E;)

(closely related to
Pi(Ch(E;)) )



Model Maintenance

e Biology (unlike much of chemistry) is
combinatorial

o Biochemical systems have many regular repeated
components

o Components interact and combine in complex
combinatorial ways

o Components have local state

o A biochemical system is vastly more compact that
its potential state space Or

e One may have to expand the state space during
analysis, but must not do it during description

e There is a good way:
o Describe biochemical systems compositionally

o Each component with its own state and
interactions

o ... as Nature intended... Or ...
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Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

Represent
. combinatorial
Continuous chemical systems
Chemistry compactly

11 Chemical |_
Ground Form

Discrete

Cheniistry nZ l

CTMC = CTMC

Discrete-state Semantics
(Chemical Master Equation)



Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

X
1 ?
Continuous
Chemistry
1 T Biochemical
Ground Form
Discrete x
Chemistry 1
CTMC )( CTMC

Discrete-state Semantics
(Chemical Master Equation)

Represent
infinite

chemical systems
finitely




Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

X
1 17
Continuous
hemi
C elm?ry n-Calculus
Discrete .>< k-Calculus
Chemistry 1
ctmc | X [ CTMC

Discrete-state Semantics
(Chemical Master Equation)

Represent
generative

chemical systems
finitely
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Conclusions

Process Algebra
o An extension of automata theory to populations of interacting automata
o Modeling the behavior of individuals in an arbitrary environment
o Compositionality (combining models by juxtaposition)

Connections between modeling approaches
o Connecting the discrete/concurrent/stochastic/molecular approach
o to the continuous/sequential/deterministic/population approach

Connecting syntax with semantics
o Syntax = model presentation (equations/programs/diagrams/blobs etc.)
o Semantics = state space (generated by the syntax)

Ultimately, connections between analysis techniques

o We need (and sometimes have) good semantic techniques to analyze state

spaces (e.g. calculus, but also increasingly modelchecking)

o But we need equally good syntactic techniques to structure complex models

(e.g. compositionality) and analyze them (e.g. process algebra)

A bright future for Computer Science and Logic in modern Biology
o Biology needs good analysis techniques for discrete systems analysis

(modal logics, modelchecking, causality analysis, abstract interpretation, ...)

1

Continuous
Chemistry

vi

Discrete
Chemistry

Process
Algebra

i



Exercise 1a Solution

aHi=!a“0ﬁaHi

bLo = ?a ); bMd

bMd = ?a (1.0); BHi

bHi = b4 ); PHI ® 74 ); bLO
cLo = ?b(m); cMd

cMd = ?b4 g); CHi

cHi = ¢ o); cHi ® 11 ); CLO

aHi + bLo —1-9 aHi + bMd
aHi + bMd —1-0 aHi + bHi
bHi =10 bLo
bHi + cLo —'-0 bHi + cMd
bHi + cMd —'-0 bHi + cHi
cHi =19 clo

7
a C/
. . . ’
)
,
;
N \ N \
A) \ \ 1
AEEY | i}
LAY N \
LY ' 1
LY t 1
L ! )
LY ' ]
1 \ ! 1
' \ ' \
1 1 L \
?a’ ?b:
¥ U= A .
fa ¢
] n 1 | |
| |
1 ] ' | ]
. |
| [ ] \ ]
n ' | |
n | |




Exercise 1b Solution

aHi = la 4 o;aR
aR =71 g); aHl
bLo = 7a (1.0 bMd

bMd = ?a (1.0); BHi

bHi = b o); PR ® 7 o); bLO
bR = 174 o); bHi

cLo = ?b(m); cMd

CMd = ?b 4 ¢); CHi

cHi = 'c10 CR® 14 )5 clO
CR =710 cH1

aHi + bLo —»1-9 aR + bMd
aHi + bMd —'-0 aR + bHi
aR —1.0 gHji

bHi =10 bLo

bHi + cLo —»'-9 bR + cMd
bHi + cMd —'-0 bR + cHi
bR —1-0 bHji

cHi =19 clo

Note: no reaction from cHi to cR etc. because
there is nothing (here) to interact with c.

The chemical system is incomplete (it does
not say how cHi would behave in a bigger
system), while the automata already specify
what would happen (if we remove the red bits
above we obtain the same reactions).
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Q: What does this do?

Stochastic Answer:
robust quasi-oscillation

—— Ga() —— Gb()

Exercise 2 Solution

un 100 of (Ga() | Gb()
un 1 of (Da) | Db()

A=la ;A@ 8 A =758 | A= la, A,
B = !b(r);B @ ?a;B’ B’ = ?a;A Bd = !b(r);Bd

A+B —" A+B’
B+A —f B+A

A+B’ =" A+A
B+A —" B+B

A+B, —»" A+B, A'+B, —»" B+B,
B+A, " B’+A, B’+A; -7 A+A,

d[A]/dt = r[A][B’]-r[B][A]-r[A][By]+r[B’][A,]
d[A’]/dt = r[B][A]-r[B][A’]+r[A][B,]-r[A’][B4]
d[B]/dt = r[B][A’]-r[A][B]-r[B][A]+r[A’][B]
d[B’]/dt = r[A][B]-r[A][B’]+r[B][A4]-r[B’][A4]

d[A]/dt = r[A][B’]-r[B][A]-rk[A]+rk[B’]

d[A,]/dt = o|| d[A’]/dt = r[B][A]-r[B][A"]+rk[A]-rk[A’]

d[B,]/dt = 0|| d[B]/dt = r[B][A’]-r[A][B]-rk[B]+rk[A’]
d[B’]/dt = r[A][B]-r[A][B’]+rk[B]-rk[B’]

[A4],[B4] are constant;
assume them both = k

- ODE predicts dampened
- oscillation, while the

- stochasic system keeps
: oscillating at max level.

SPiM

Deterministic Answer: r=1.0
180 | k=1.0
- dampened oscillation
140 dx1/dt=x1*x4-x3*x1-x1+x4, 200.0
dx2/dt=x3*x1-x3*x2+x1-x2, 0.0
120 | dx3/dt=x3*x2-x1*x3-x3+x2, 0.0

dx4/dt=x1*x3-x1*x4+x3-x4, 0.0
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Unary Reactions

d[A]/dt = -k[A] = d[A]/dt =-1[A]

)
Ao (k1) |
[A]=1/y

‘1 /A ’C(r)O
A-—>T0 / l



Hetero Reactions

d[A]/dt=d[B]/dt= -k[A][B] = d[A]/dt=d[B]/dt=-ry[A][B]

A+B ak ‘
[A] [B]O 1/Y — a(r)/O B = a(r)/O
A+B _)ro / AlB

A+B l

A+B

i

Hetero Reaction



Homeo Reactions

d[A]/dt = -4k[A]2 = d[A]/dt = -2r[A]?

t
ArA 0
[Alg=2/y P .
f /A =?a4,,0 ® la,,0
A+A 52 0,7 AlA

e

O»Q\o Homeo Reaction
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200

180 -
160 -

140
120
100
80
60

40
20 |

Q: What does this do?
la

'b
Stochastic Answer: bistable
system
——A) —B()
| M"'u -

ODE predicts stability [A]'=0
: for any value of [A], while the
: stochastic system is stable only

Groupies ODE

Same rater
-

Different rates r,s

(A+B —s" A+A A+B —" A+A

kB+A —" B+B B+A —s B+B

(d[A]/dt = (d[A]/dt = r[A][B]-S[B][A] |

d[B]/dt =r d[B]/dt = s[B][A]-r[A][B]
\§ \_ J
(d[A]/dt = 0 (d[A]/dt = (r-s)[A][B]
d[B]/dt =0 d[B]/dt = (s1)[B][A]
o Deterministic Answer:
Deterministic Answer:

constant system

: galways loose. The !
: : stochastic system can have-
: s either outcome (with

monostable systems

{3

s“win”, if r>s, and B will - s/ emwesnseen

‘‘‘‘‘‘‘‘‘‘

- different probabilities).



200

180 4
160 4
140 4

120
100
80

60 4
40 4
204

0

Q: What does this do?

la

la

by
Doping ‘ .

Stochastic Answer:
bounded random walk

—— Ga() —— Gb() —— Da() —— Dby

u"

e

——

0

()
|
[
5

% .bw'w

I
; ;
4 6

:
SPiM

Doped Groupies ODEs

A=la,;A® 7B | Ay=laA

(A+B T A+A | A+B, 7 B+B,
kB+A —" B+B B+A, & A+A,

[ d[A]/dt_= c[AYBH-TIBITAT-r{A][B.+r[B][A,]
 d[B]/dt = riBIA-rATIBI-r[B][Adl +r[A][Bd]

d[A,]/dt = 0
d[B,]/dt = 0

[ d[A]/dt = -rk([A]-[B]) | ™" elanca
d[B]/dt = rk([A]-[B]) | At[Al-[El: diAl/dt=diBl/dt-0
\.

At [A]=[B]: d[A]/dt=d[B]/dt=0

[A4],[Bg4] are constant;
assume them both =k

................................................... DeterminiStic Answer:
o [0:0.003:3.0] r=1.0 ke1.0 convergence and stability
ol dx1/dt = -(x1-x2), 200.0
dx2/dt = (x1-x2), 0.0 ODE predicts converging stable equilibrium at
| [A]=[B] instead of the total chaos observed in
q | | the stochastic system!
4 ] For k=0 (no dope), predicts deadlock d[A]/dt=d[B]/dt=0
s Matlab | but at any value of [A], which is definitely not true in the

stochastic system.
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Hysteric Groupies ODEs

Q: What does this do?

Stochastic Answer:
robust quasi-oscillation

—— Ga() —— Gb()

un 100 of (Ga() | Gb()
un 1 of (Da) | Db()

A=la ;A@ 8 A =758 | A= la, A,
B = !b(r);B @ ?a;B’ B’ = ?a;A Bd = !b(r);Bd

A+B —" A+B’
B+A —f B+A

A+B’ =" A+A
B+A —" B+B

A+B, —»" A+B, A'+B, —»" B+B,
B+A, " B’+A, B’+A; -7 A+A,

d[A]/dt = r[A][B’]-r[B][A]-r[A][By]+r[B’][A,]
d[A’]/dt = r[B][A]-r[B][A’]+r[A][B,]-r[A’][B4]
d[B]/dt = r[B][A’]-r[A][B]-r[B][A]+r[A’][B]
d[B’]/dt = r[A][B]-r[A][B’]+r[B][A4]-r[B’][A4]

d[A]/dt = r[A][B’]-r[B][A]-rk[A]+rk[B’]

d[A,]/dt = o|| d[A’]/dt = r[B][A]-r[B][A"]+rk[A]-rk[A’]

d[B,]/dt = 0|| d[B]/dt = r[B][A’]-r[A][B]-rk[B]+rk[A’]
d[B’]/dt = r[A][B]-r[A][B’]+rk[B]-rk[B’]

[A4],[B4] are constant;
assume them both = k

- ODE predicts dampened
- oscillation, while the

- stochasic system keeps
: oscillating at max level.

SPiM

Deterministic Answer: r=1.0
180 | k=1.0
- dampened oscillation
140 dx1/dt=x1*x4-x3*x1-x1+x4, 200.0
dx2/dt=x3*x1-x3*x2+x1-x2, 0.0
120 | dx3/dt=x3*x2-x1*x3-x3+x2, 0.0

dx4/dt=x1*x3-x1*x4+x3-x4, 0.0




Q: What does this do?

Hysteric Groupies ODEs

A=la;A@ ;A N =2bA” A”=7bB | A
B=1lb,;B®?%;B B =%;B” B”=?aA | By

1a);Aq
'b);Bq

A
b |B

+B SFAYB’  A+B’ T A+B”  A+B” T A+A
+A —>"B+A’ B+A’ »"B+A” B+A” —' B+B

A+By —»" A'+By A+By; —" A”+By A”+By —" B+By
B+Ay =" B’+Ay B’+Ay - B”+A; B7+A; 57 A+Ay

b
b

la  Ib
Doping ' ‘

200

180 |
160 -|
140 |
120 |
100 |
80 -
60 -
40
20

G[A]/dt = r[A][B”]-r[B][A]-r[A][B4]+r[B"][A4]
d[A’]/dt = r[B][A]-r[B][A’]+r[A][B,]-r[A’][B4]
d[A”]/dt = r[B][A’]-r[B][A”]+r[A"][By]-r[A"][B]
d[B]/dt = r[B][A"]-r[A][B]-r[B][A4]+r[A"][B]
d[B’]/dt = r[A][B]-r[A][B’]+r[B][A4]-r[B][A4]
d[B”]/dt = r[A][B’]-r[A][B”]+r[B’][Aq]-r[B”][A4]

N\

N

d[A,]/dt = 0
d[B.]/dt =0

%

(Q[A]/dt = r[A][B”]-r[BI[A]-rK[Al+rk[B"] )
d[A’]/dt = r[B][A]-r[B][A’]+rk[A]-rk[A’]
d[A”]/dt = r[B][A’]-r[B][A”]+rk[A’]-rK[A”]
d[B]/dt = r[B][A”]-r[A][B]-rk[B]+rk[A”]
d[B’]/dt = r[A][B]-r[A][B’]+rk[B]-rk[B’]

d[B”]/dt = r[A][B’]-r[A][B”]+rk[B’]-rk[B”]

g _/

[A4],[B4] are constant;
assume them both = k

OO0 00 0000000000000 00000000 OO0 OO0OOPOCPNOCENONOENONOINONONEONEOEOOLOLONONONONONONONONONONONONONONOEOONOELS
L ] L]
. A dx1/dt=x1*x6-x3*x1-x1+x6, 200.0 .
° A’ dx2/dt=x3*x1-x3*x2+x1-x2, 0.0 °
: A” dx5/dt=x3*x2-x3*x5+x2-x5, 0.0 :
° B dx3/dt=x3*x5-x1*x3-x3+x5, 0.0 °
: B’ dx4/dt=x1*x3-x1*x4+x3-x4, 0.0 :
; . B” dx6/dt=x1"x4-x1*x6+x4-x6, 0.0
Stochastic Answer: : G R R G .
L ] L]
robust oscillation * B ' ' ' ' ' .
oo . Matlab r=1.0 .
° continuous_sys_generator k=1 .0 °
: 180 -
SPiM . .
L] L]
L] L]
L ] L]
e 100 - °
L ] L]
L ] L]
L ] L]
L ] L]
. &0 4
L ] L]
L ] L]
L ] L]
v L\AMj st pad : 0 . - . . . 1 :
1 , , ) 5 6 , . . wo 0 200 400 500 800 1000 1200 °
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Choice Law by ODEs

tyBAt;B = t,,,;B
G

B
.
A A Y B
t, (B
[A= tyBAt;B J [A= Gy B ]

[A@’\ B } [A®A*“B]

A® B
[A]" = -A[A] - p[A] _ [A]" = -(A+p)[A]
[B] = A[A] + p[A] [B] = (A+p)[A]

2N412A A NO



Ildle Interaction Law by ODEs

{A+C ®" B+C]

[A]" = -r[A][C]
[B] = r[A][C]
[C] =0

directive
sample 6.0
1000

directive plot
A()

AO
1000 4
C @ 800
600 -
400 o
200 4
0

B()
and B() = ()

It may seem like A should
decrease half as fast,

|

A=7c;AA ;B

C=IcC

-State A is memoryless

but NO! Two ways to explain:
of any past idling.

A+C ® B+C

[A+C ®" A+C}

[A]" = -r[A][C]

[B] = r[A][C]
[ClI'=0

- Activity on c is double

directive
sample 6.0
1000

directive plot
A()

ﬁo W —— A0
c@1.0:chan

let A() = do 7c;
B() or ?c; A()

2N1 A MO NO




Equiconfluence Law by ODEs

t)\;B | tA;B = (B | ty; B) Want to show that B on bth
sides has the “same behavior”
A t)\ (equal quantities of B produced
B . tz)\ B at all times)
G B
C & t,
N
A=1t,B _"? E =t (B 1 G)
C = t)\;B e = t)\;B
AlC ) ;fe't°/l’"=°é"='él'G'/'2 ..................... :
= . , :
27 A[A'] + A[C]
: ®A B+G s A[E+G/2] + A[E+G/2]
A @B o |C@® := 2M[E] + AlG] - [B]
C ®B o E S -TA] = [E+G/2] = [E] +[G] /2
A+C 2 i?[]E];[é;\[E] A[G])/2 :
[E] = -2A[E] tA E+G/2 Lo :
[G] — ZA[E] _)\[G] '....[. ..... 1....[..;I ................... y
[B]" = 2A[E] + A[G]
[B] h.as equal time evolutions on the two sides
[A] = -A[A] (AT = -NA] Tt imposes the constrait, in particular, tha
[C] = -A[C] =? [C’] = -A[C’] [Al,=[E+G/2], and [C],=[E+G/2], (at time zero).
[B] = A[A] + A[C] [B] = A[A] + A[C’] The initial conditions of the right hand system

specify that [G/2],=0 (since only E is present).
Therefore, we obtain that [A],=[C],=[E],.

2N41 A - NO



Ex: A=1.0, Y=2.0

tyB | t,;D

A

Stochastic Interleaving

@1.0

[A,],=1000

¢,

@2.0

[C,],=1000

Y

@1.0

[Y],=1000

@2.0

= ty(B | t;D) At ;(ty;B | D)

10aa

7580

500
250

SPiM
1000 o
@1.0 B a0
B
750
500
250 vic, YA
@2-0 g 2‘-._.___‘_' '“‘“--_._,___I
0 4

Amazingly, the B’s and the D’s from the two

branches sum up to exponential distributions

let A() = delay@1.0; B()
and B() = ()

let C() = delay@2.0; D()
and D() = ()

run 1000 of (A() | C())

let A() =
and B() = ()

delay@1.0; B()

let C() =
and D() = ()

delay@2.0; D()

let Y() =
do delay@1.0; (B() | C())
or delay@2.0; (A() | D())

run 1000 of Y()

2TN1 A MO NO



Stochastic Interleaving Law by ODEs

: I Il | ! ! | Want to show that B and D on
t7\’B | tU’D I t?\’ (B | tu’D) A tIJ’ (t7\’B | D) both sides have the “same
- N ~ behavior” (equal quantities
A, =1,;B Y=t;B1C)At;(A, | D) of B and D produced at all
C,=t;D C,=t;D times)
\A1 | C, ) A, =t,;B
Y
(A, @B ) (Y&B+C, \ (Y] = AY]-uDY] )
C,®D Y®'A, +D [A] = U[Y]-A[A]
(A+C ) C, @D [B]' = ALY]+A[A,]
A, @B [C.]" = A[Y]-pIC,]
\{ J T = uivisiiG]
[A]" = -A[A{] TY+Az]' = -A[Y+A,] :[Y+A2] = [Y]+[A,]
[B]' = A[A(] _? [BI" = A[Y+A,] = -A[YT-HIY1+H[YT-A[A,]
[Ci] = -p[Cy] e [Y+C,]" = -p[Y+C,] = -A[Y]-A[A,]
[D]. = U[C1] iD] = U[Y+C2] °= -7\[Y+A2] [Y+A,] decays exponentially!

[B] and [D] have equal time evolutions on the two sides provided that [A,]=[Y+A,] and [C,]=[Y+C,].
This imposes the constraint, in particular, that [A,],=[Y+A,], and [C,],=[Y+C,], (at time zero).

The initial conditions of the right hand system specify that [A,],=[C,],=0 (since only Y is present).
Therefore, we obtain that [A,],=[C,],=[Y],-

So, for example, if we run a stochastic simulation of the left hand side with 1000*A1
and 1000*C1, we obtain the same curves for B and D than a stochastic simulation of the
right hand side with 1000*Y.

2N41 A TYh 'NO



